Numbers in a range
Practice
3.5 (10 votes)
Combinatorics
Math
Problem
91% Success 2534 Attempts 30 Points 2s Time Limit 256MB Memory 1024 KB Max Code

You are given three integers \(l\)\(r\), and \(n\). You are also given an array of integers \(a[1], a[2], ..., a[n-1]\) of size \(n-1\).

Determine the possible number of ways of selecting \(n\) integers \(x_{1}, x_{2}, ..., x_{n}\) from the range \([l, r]\) such that the selected integers are in strictly increasing order (from left to right).

Note

  •  \(x_{i+1} - x_i \ge a[i] \space \forall \space 1 \le i \lt n\)
  • Output must be printed as modulo \(1000000007\)

Input format

  • First line: Three space-separated integers \(l\)\(r\), and \(n\)
  • Second-line: \(n-1\) space-separated integers \(a[1 .. n-1]\)

Output format

Print the possible number of ways of selecting \(n\) integers \(x_1, x_2, ..., x_n\).

Constraints

\(-10^6 \le l \le r \le 10^6 \\ 2 \le n \le 10^6 \\ 0 \le a[i] \le 10^9\)

Please login to use the editor

You need to be logged in to access the code editor

Loading...

Please wait while we load the editor

Loading...
Results
Custom Input
Run your code to see the output
Submissions
Please login to view your submissions
Similar Problems
Points:30
11 votes
Tags:
CombinatoricsData StructuresDynamic ProgrammingMath
Points:30
4 votes
Tags:
CombinatoricsMathMediumNumber Theory
Points:30
9 votes
Tags:
ApprovedCombinatoricsMathMediumNumber TheoryOpen