Count the triangles
Practice
3.4 (33 votes)
Sparse table
Advanced data structures
Easy Medium
Data structures
Problem
63% Success 7217 Attempts 30 Points 3s Time Limit 256MB Memory 1024 KB Max Code

Given an array $$A$$ of length $$N$$. We say that a subarray $$(A_l, A_{l + 1}, \dots, A_r)$$ is good if for every $$l \le i < j < k \le r$$ we can form a triangle (possible degenerate) with lengths $$A_i, A_j, A_k$$. In particular if $$0 \le r - l \le 1$$ then the subarray is good. Count the number of good subarrays. 

$$\textbf{Input}$$

The first line contains one integer - $$n$$ $$(1 \le n \le 2 \cdot 10^5)$$.

The second line contains $$n$$ integers - $$A_1, A_2, \dots, A_N$$ $$(1 \le A_i \le 10^9)$$.

$$\textbf{Output}$$

Output the number of good subarrays.

Please login to use the editor

You need to be logged in to access the code editor

Loading...

Please wait while we load the editor

Loading...
Results
Custom Input
Run your code to see the output
Submissions
Please login to view your submissions
Similar Problems
Points:30
4 votes
Tags:
Easy-Medium